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ABSTRACT

We investigate which scalar quantity or quantities can best predict the loss of equilibrium and

subsequent eruption of magnetic flux ropes in the solar corona. Our models are initialized with a

potential magnetic arcade, which is then evolved by means of two effects on the lower boundary:

firstly a gradual shearing of the arcade, modelling differential rotation on the solar surface, and secondly

supergranular diffusion. These result in flux cancellation at the polarity inversion line and the formation

of a twisted flux rope. We use three model setups: full magnetohydrodynamics (MHD) in cartesian

coordinates, and the magnetofrictional model in both cartesian and polar coordinates. The flux ropes

are translationally-invariant, allowing for very fast computational times and thus a comprehensive

parameter study, comprising hundreds of simulations and thousands of eruptions. Similar flux rope

behavior is observed using either magnetofriction or MHD, and there are several scalar criteria that

could be used as proxies for eruptivity. The most consistent predictor of eruptions in either model

is the squared current in the axial direction of the rope, normalised by the relative helicity, although

a variation on the previously proposed ‘eruptivity index’ is also found to perform well in both the

magnetofrictional and MHD simulations.

1. INTRODUCTION

This paper builds on our previous work (Rice & Yeates

2022), in which we studied the formation and eruption

of magnetic flux ropes using a translationally-invariant

(2.5D) cartesian magnetofrictional model. Here we ex-

pand the study to include two further models: a second

magnetofrictional model in axisymmetric polar coordi-

nates and a full magnetohydrodynamic (MHD) model in

cartesian coordinates. Our aim is to verify that the re-

sults previously presented are valid both in magnetofric-

tion and MHD, and that the qualitative behavior of flux

ropes is similar in both cartesian and polar models.

Flux ropes are formed when a magnetic arcade in the

solar corona is sheared and reconnects with itself at its

base, forming a twisted bundle of magnetic flux (Liu

2020). These ropes can become unstable under certain

conditions, releasing large amounts of energy in a coro-

nal mass ejection (Forbes et al. 2006). The mechanisms

behind such eruptions and the conditions required to

trigger them are not yet fully understood, despite be-

ing an active field of research for many decades. Ap-

proaches to the study of such eruptions and instabilities

have ranged from simple analytic two-dimensional mod-

els (e.g. Kuperus & Raadu 1974) to full 3D MHD sim-

ulations (e.g. Leake et al. 2013, 2014), which have only

become feasible relatively recently.

One approach to predicting eruptivity is to look

for stability criteria motivated by simplified theoretical

models - a good example is the torus instability (e.g.

Kliem & Török 2006), which is particularly applicable

where the flux rope itself forms a section of a circu-

lar structure. However, the availability of parametric

numerical simulations of flux rope eruptions also opens

up the possibility to look for measurable quantities af-

ter the fact that show a significant increase or decrease

shortly before an eruption. This approach was taken

by Pariat et al. (2017), who analysed the simulations of

Leake et al. (2013, 2014). Most scalar measurements of

the system did not have any strong connection to erup-

tivity, but the so-called ‘eruptivity index’ - the fraction

of the relative magnetic helicity made up of the current-

carrying component - exhibited a large increase in those

simulations where the flux rope later erupted.

Based on a small number of MHD simulations (Zuc-

carello et al. 2015), Zuccarello et al. (2018) have also

observed a consistent threshold in the eruptivity index
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above which the system becomes unstable. This result

is notable as the evolution of the relative helicity itself

differs significantly from the simulations of Leake et al.

(2013), whereas the eruptivity index itself behaves sim-

ilarly in both studies. Motivated by these results, the

eruptivity index has been estimated prior to the erup-

tion of several structures in the real corona (e.g., Gupta

et al. 2021), and found to be consistently high prior to

eruptive events. Estimates of the index using obser-

vational data must necessarily extrapolate the coronal

magnetic field from photospheric measurements, which

adds a degree of uncertainty. This has been an active

field of study for some time, and is usually accomplished

using a force-free field extrapolation (e.g., Wiegelmann

& Sakurai 2012).

In a series of parametric simulations, Pariat et al.

(2023) analysed the evolution of the eruptivity index

in a coronal jet, where the driven boundary conditions

were applied for differing lengths of time. This study

also found an increase in the eruptivity index prior to

an eruption, although it is acknowledged that a larger

parameter study is necessary to determine if there is a

consistent threshold above which the system becomes

unstable.

Our previous study on the eruptivity of flux ropes

(Rice & Yeates 2022) sought a compromise between sim-

ple analytical models and full 3D MHD simulations, by

using the magnetofrictional model in a 2.5D cartesian

domain. In the magnetofrictional model, pioneered by

Yang et al. (1986), the fluid equations are disregarded

and instead replaced with a fictitious ‘velocity’ field ob-

tained explicitly from the magnetic field, while the MHD

induction equation is retained. This model is computa-

tionally much faster than full MHD as it is not necessary

to resolve waves within the fluid. Flux rope formation

and eruptions are observed (e.g., Mackay & van Bal-

legooijen 2006; Hoeksema et al. 2020), as in full MHD.

Morevover, Craig & Sneyd (1986) propose that replacing

the fluid equations in ideal MHD with a fictitious veloc-

ity proportional to the Lorentz force (as in magnetofric-

tion) does not affect the linear stability properties of the

system. Indeed, Pagano et al. (2013) have shown that

configurations taken from magnetofrictional simulations

at the point of eruption still lead to an eruption in full

MHD.

Our previous studyThis found that although the erup-

tivity index did usually increase before flux rope erup-

tions, there was not a consistent value at which an erup-

tion would occur. We thus judged that this quantity

was not a good predictor of eruptions. Instead, we

found that (among others) the ratio of the rope cur-

rent squared to the relative helicity satisfied the require-

ments of a good predictor, there being a threshold above

which an eruption was very likely within a given num-

ber of days. We note that in this case the helicity and

associated quantitites were calculated using a new 2.5D-

specific definition, the use of which will be discussed fur-

ther in this paper.

In this paper we improve upon our previous work by

directly comparing results from the 2.5D magnetofric-

tional code to equivalent simulations in full MHD, us-

ing the LARE2D code (Arber et al. 2001). Each sim-

ulation takes far longer than an equivalent using the

magnetofrictional method, but we have nevertheless per-

formed a large parameter study, varying (among other

quantities) the plasma beta in place of the magnetofric-

tional relaxation rate. We have also undertaken an

equivalent parameter study in polar coordinates, using a

new axisymmetric magnetofrictional code. We compare

the results from this model to those in the cartesian co-

ordinate system, to test the validity of the general use of

cartesian simulations when modelling the solar corona.

By performing very similar studies using both MHD

and magnetofriction in cartesian geometry, we can di-

rectly compare the two methods, evaluating which (if

any) eruptivity criteria are consistently good predictors

in both cases, and if so whether the thresholds for erup-

tivity are independent of the method used. The ex-

istence of such criteria would lend further credence to

the use of the magnetofrictional method in place of full

MHD when predicting flux rope eruptions with trigger

mechanisms similar to those in our study.

In all three simulation setups we observe similar be-

havior to our original study, with flux rope formation

and eruptions observed over a large range of parameters.

In addition to flux ropes we also observe periodic ‘arcade

eruptions’ - rapid reconnection at the top of a sheared

magnetic arcade (above the flux rope, if one is present).

It is possible that these represent streamer blowouts or

even ‘stealth CMEs’ (Webb & Howard 2012). How-

ever, we do not focus on these eruptions but rather the

eruption of the flux rope itself. In general, as the pho-

tospheric diffusion rate increases, flux ropes form and

erupt more quickly. In some of our simulations we ob-

serve that after an eruption a flux rope reforms and sub-

sequent eruptions can take place. For each of the three

simulation setups the parameter study comprises 320

runs, which has allowed us to observe more than 1000

flux rope eruptions.

We begin in Section 2 by outlining the basis of the

three models – cartesian magnetofriction, axisymmet-

ric polar magnetofriction and cartesian MHD. We then

describe the diagnostic measurements of the system, in-

cluding a discussion on the optimal definition of the rel-
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ative helicity and related quantities. In Section 3 we de-

scribe the structure and behavior of flux ropes in both

MHD and magnetofriction, and their dependence on the

photospheric flux cancellation rate η0. Finally, in Sec-

tion 4 we discuss which diagnostic ratios are good predic-

tors of eruptivity in all three models, and directly com-

pare the results from the equivalent magnetofrictional

and MHD models.

2. MODELLING APPROACH

2.1. Equations and Numerical Implementation

We use three models to model magnetic flux rope be-

havior. The first two use the magnetofrictional model

(e.g. Mackay & Yeates 2012) in either cartesian or po-

lar coordinates, using our own code. The third is a full

magetohydrodynamic (MHD) model in cartesian coor-

dinates, using the LARE2D code (Arber et al. 2001).

The models are all translationally-invariant (2.5D) ei-

ther in the z direction in the cartesian simulations or in

the longitudinal (ϕ) direction in the polar simulations.

In the cartesian models the domain is a square box

with coordinates −1 < x < 1, 0 < y < 1 and z the in-

variant direction, with equally-spaced grid cells. The

polar simulations model an entire hemisphere of the

corona, with coordinates 0 < θ < π and 1 < r < 2.5,

and ϕ the invariant longitudinal direction. The grid cells

here are evenly spaced in s = cos θ and ρ = log r (Yeates

2014), which increases the resolution in the areas of in-

terest.

Both models directly employ Faraday’s law, Ohm’s

law and Ampére’s law. However, whereas MHD accu-

rately models the fluid dynamics by coupling these to

Euler’s fluid equations, in magnetofriction a fictitious

velocity field is obtained explicitly from the magnetic

field.

In dimensionless form, the MHD equations used in the

LARE2D code are as follows:

∂B

∂t
=−∇×E (1)

E= ηj− v ×B (2)

µ0j=∇×B (3)

∂ρ

∂t
=−∇ · (ρv) (4)

Dv

Dt
=

1

ρ
j×B− 1

ρ
∇P + g (5)

Dϵ

Dt
=−P

ρ
∇ · v +

η

ρ
j2 (6)

ϵ=
P

ρ(γ − 1)
, (7)

where the variable quanitites are the magnetic field den-

sity B, the current density j, the plasma pressure P , the

plasma density ρ and the internal energy density ϵ. The

ratio of specific heats is taken to be γ = 5/3. We choose

the gravitational field to be g = −ey/(y+1)2. The con-

stant η represents the coronal magnetic diffusivity and

µ0 is the permeability of free space, henceforth taken

to be unity. For consistency between the three model

setups we set the coronal diffusivity as η = 5 × 10−4

throughout. There is considerable variation in the litera-

ture as to this value (e.g. Aulanier et al. 2010; Mackay &

van Ballegooijen 2006), so we choose it to be as small as

possible whilst still being able to resolve current sheets

at our chosen grid resolution. No explicit viscosity is

used.

There is no fluid in the magnetofrictional model, and

so the plasma density, pressure and internal energy are

not considered. Instead, we replace the fluid equations

with a closed expression for a fictitious fluid velocity v.

The full set of magnetofrictional equations are

∂B

∂t
=−∇×E (8)

E= ηj− v ×B (9)

µ0j=∇×B (10)

v= ν0
(∇×B)×B

B2 + δe−δB2 + vout(y)ey, (11)

where we have introduced the constant magnetofric-

tional relaxation rate ν0, which determines the time it

takes for the system to relax to a current-free state. The

‘softening’ constant δ = 0.01 is a small number which

prevents the denominator becoming zero at magnetic

null points. The vout term models the effect of the solar

wind (Parker 1958), resulting in an additional upward

velocity.

In cartesian coordinates this outflow speed is taken to

be

vout(y) = v1y
10ey, (12)

in line with our previous work, and in polar coordinates

we use a more realistic approximation to the Parker solar

wind solution (Rice & Yeates 2021)

vout(r) = v1
r21e

−2rc/r

r2e−2rc/r1
er, (13)

where the critical radius rc is 10 solar radii, r1 = 2.5

solar radii is the upper extent of the domain and v1 is

a constant wind speed factor, chosen to be 50 times the

maximum shearing velocity. A realistic value is likely

higher than this, but this compromise is made as the

resultant high velocities at the top of the domain in-

crease computation times significantly. Such an outflow

term is not necessary in the MHD calculations as we

instead impose a gravitational field on the fluid, which
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in the absence of a magnetic field would naturally reach

an equilibrium with nonzero vertical velocity.

In our magnetofrictional code we ensure the solenoidal

condition (∇·B = 0) to machine precision by describing

the system in terms of a vector potential A, such that

B = ∇×A. (14)

The LARE2D code does not employ a vector poten-

tial but instead ensures the solenoidal condition using

the constrained transport method of Evans & Hawley

(1988).

Numerically, in our magnetofrictional models the dif-

ferential operators are calculated using Gauss’ or Stokes’

theorem as appropriate, and the variable fields are

stored on a staggered grid (Yee 1966). In cartesian co-

ordinates this is equivalent to using a central-difference

scheme. The cartesian simulations are initialised with

Python and run using Fortran 90, with a grid resolution

of 256 x 128 cells. The axisymmetric polar simulations

are run using Python with a grid resolution of 180 x 60

cells.

We adopt dimensionless units throughout. In the ax-

isymmetric polar model one distance unit is taken to

be 1 solar radius. In the cartesian models one dis-

tance unit is around the width of the magnetic arcade,

which varies considerably but is assumed to be around

35◦ on the solar surface (or 0.44 solar radii), based on

arcades observed in the axisymmetric simulations. Us-

ing the photospheric shearing rates (discussed in Section

2.3) the time units can then be set as 27.4 days in the

cartesian simulations and 19.5 days in the axisymmet-

ric simulations. However, the significant differences in

the two coordinate systems mean this should only be

regarded as the correct order of magnitude and as such

the timescales discussed later in the paper should only

be treated as indicative.

2.2. Initial Conditions

The initial magnetic fields are plotted in Figure 1.

In both cartesian and polar coordinates, the simula-

tions are initialised with a PFSS (Potential Field Source-

Surface) field, in which the magnetic field is radial at the

upper boundary and there is no electric current through-

out the domain. PFSS is chosen for consistency with the

MHD simulations, although it would be preferable to use

an ‘outflow field’ (Rice & Yeates 2021), a steady-state

field in which the magnetic field is in equilibrium when

the solar wind is taken into account.

In polar coordinates, we choose the radial magnetic

field strength on the lower boundary to fit the following

analytic function:

Br(1, θ) = s7 + 5de−10d2

, (15)

where s = cos(θ) and d = s− cos(0.35π). The first term

(s7) approximates the magnetic field of the global solar

dipole reasonably well (e.g., Svalgaard & Wilcox 1978;

Wang et al. 2005), and the second term ensures there

is a clear polarity inversion line at a latitude where the

differential rotation of the surface will result in a con-

siderable shearing rate. In the axisymmetric simulations

we observe the arcade (the region with the closed field

lines) between around 20 and 70 degrees from the north

pole. A symmetric field around the equator would not

be suitable as the differential rotation is symmetric be-

tween the northern and southern hemispheres, so such

an arcade would merely be dragged around the equator

without being sheared.

As in our previous work (Rice & Yeates 2022) the

cartesian simulations (both magnetofriction and MHD)

are initialised with the lower boundary condition

By(0, x) = B0 sin
(π
2
x
)
, (16)

for some constant B0 of order unity.

The initial magnetic field completely specifies the

magnetofrictional system, but in MHD we additionally

require initial conditions for the fluid. The initial den-

sity is chosen to be constant throughout the domain, as

is the initial internal energy. The initial fluid velocity

is required to be positive in the y direction in order to

accurately emulate the solar wind – otherwise it is pos-

sible for the fluid to be in equilibrium with a negative

vertical velocity. The initial velocity profile chosen is

Vout(y) = v1y
2 for some constant v1.

This initial state is far from a steady-state equilib-

rium, but it does relax to one very quickly relative to

the timescale of the magnetic field evolution. The ini-

tial conditions and boundary conditions on the velocity

(discussed in Section 2.3) enable the solar wind to be
represented self-consistently, as the equilibrium state of

the system will naturally have a non-zero vertical fluid

velocity. The effect of the solar wind is shown in Figure

2, illustrating the initial condition for the MHD simu-

lations (top row) along with the equilibrium state the

system reaches in the absence of driven boundary con-

ditions or supergranular diffusion (bottom row).

As the system relaxes to this ‘outflow field’ state,

the magnetic field lines at the top of the domain be-

come more radial, with fewer of them connecting back

to the surface – increasing the open flux through the top

boundary. Outside the arcade, the vertical fluid veloc-

ity is significant and roughly constant. Inside the ar-

cade the fluid is essentially constrained to the magnetic

field lines and as such the fluid velocity is comparatively

small. During this relaxation period the fluid density

within the arcade remains roughly constant, whereas in
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Figure 1. Initial magnetic fields for the cartesian simulations (left) and the axisymmetric simulations (right), with magnetic
field lines in black. These are PFSS fields with the lower radial boundary conditions as in Equations (15) and (16). In
the axisymmetric simulations, the computational domain only covers one hemisphere, and the other is only plotted here for
illustrative purposes.

the region affected by the solar wind the density falls to

around a quarter of its initial value, becoming slightly

less dense with increasing height. As the system relaxes

to this state soon after the simulations are initialised,

this can be essentially regarded as the initial condition.

A similar process occurs to the magnetic field in the

magnetofrictional simulations, although this is due to

an imposed solar wind velocity term and the fluid itself

is not modelled.

2.3. Boundary Conditions

The boundary conditions on the magnetic field are

consistent between the three simulation sets. We impose

that there is zero perpendicular current on the upper

and lower boundaries of the domain, and that the mag-

netic field is entirely vertical/radial at the side bound-

aries (or the poles in the axisymmetric simulations).

In the MHD simulations we additionally require

boundary conditions on the fluid variables. We im-

pose that the internal energy has zero gradient over the

boundary (Neumann boundary conditions), allowing it

to evolve to a state independent of its initial value. The

fluid density also uses this condition on three of the

boundaries, but the density on the lower boundary is

held at a fixed value ρ0, imposed at one cell within the

domain. This ensures the density does not fall to zero

as the solar wind carries the fluid out the top of the

domain.

The boundary conditions for the fluid velocity itself

are more complex. On the sides of the domain the hor-

izontal (vx) and out-of-plane (vz) velocities are set to

zero, preventing flow through the boundaries. There

are Neumann boundary conditions on the vertical ve-

locity vy, allowing for upwards flow. Directly on the

lower boundary we impose that the vertical velocity is

zero, which prevents numerical instabilities. On the top

boundary the condition on the vertical fluid velocity is

vy(x, 1.0) = max(kvy(x, 1.0−∆y), 0.0), (17)

where 1.0−∆y is the height of the first cell fully within

the domain and k = 1.25 is a constant that encour-

ages the fluid to accelerate upwards through the top

boundary. During arcade eruptions the fluid occasion-

ally changes direction to flow downwards and attempts

to suck in material from above the top boundary, which

would be numerically problematic. This boundary con-

dition ensures the vertical fluid velocity on the boundary

remains non-negative but still allows for these eruptions

to occur realistically.

We also impose driven boundary conditions on the

lower boundary, representing photospheric shearing and

supergranular diffusion. In the magnetofrictional sim-

ulations the shearing velocity is added directly to the

fictitious velocity field v on the lower boundary, and in

the MHD simulations it is imposed directly on the fluid

velocity itself.

In the axisymmetric simulations we use a realistic pro-

file for the differential rotation rate. As a function of

latitude, this is approximately (Snodgrass 1983)

V (θ) = 0.18− 2.396 cos2 θ − 1.787 cos4(θ) degrees/day.

(18)
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Vertical Fluid Velocity
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Magnetic Field
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0.5

1.0
Density

0
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Initial Condition

Vertical Fluid Velocity

0

1

Magnetic Field

0.0

0.5

1.0
Density

0

1

After Solar Wind Relaxation

Figure 2. Illustration of the initial condition and relaxed ‘outflow field’ state of the MHD simulations. Such an outflow field
is obtained in the absence of driven boundary conditions or supergranular diffusion, where the system evolves due to the effect
of the solar wind alone. The colormaps show the vertical velocity, out-of-plane magnetic field (zero, in this case) and the fluid
density.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Latitude (θ)

−4

−2

0

V
el

o
ci

ty

Shearing Angular Velocity (degrees/day)

Shearing Angular Velocity (code units)

Shearing Velocity (code units)

Figure 3. Photospheric shearing rates varying with latitude (measured from the north pole). The angular velocity (solid line)
is then shifted into the correct reference frame and to code units (dashed line). It is then multiplied by sin θ to give a linear
velocity on the solar surface (dotted line).

It is common to use the Carrington frame as a reference

rotation frame – rotating at 13.2 degrees/day (Mackay

& van Ballegooijen 2006). However, in our code we have

chosen the reference frame such that the maximum an-

gular velocity in either direction is unity, as illustrated

in Figure 3. This is for consistency with the cartesian

simulations where the imposed shearing velocity is sim-

ply

Vshear(x) = V0 sin(πx). (19)

The constant V0 is chosen to be 1.0 in the magnetofric-

tional simulations and 0.2 in MHD. This choice deter-

mines the time units used in the code, but otherwise

makes no difference to the dynamics.

We also impose an additional magnetic diffusion term

on the lower boundary, modelling the effect of unre-

solved supergranular flows on the photosphere. This

diffusion rate (η0) is in general much larger than the

diffusion rate in the corona (η), and one of its effects is

to bring the footpoints of the magnetic arcade closer to-

gether, eventually forming a twisted magnetic flux rope

(van Ballegooijen & Martens 1989).

In the magnetofrictional models this diffusion is added

as a boundary condition to the electric field E:

E(x, 0) = −η0
∂By(x, 0)

∂x
ez, (20)

or

E(1, θ) = −η0
1

r

∂Br(1, θ)

∂θ
eϕ, (21)

in cartesian and polar coordinates, respectively.

In MHD the photospheric diffusion term cannot be

added directly to the electric field in this way. Instead,

at each timestep we add an extra diffusive term Bdiff to
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the magnetic field on the lower boundary, defined as

Bxdiff
= −η0

∆t

∆y

d

dx
By(x, 0) (22)

Bydiff
= η0∆t

d2

dx2
By(x, 0), (23)

where ∆t is the timestep and ∆y is the grid resolution

in the y direction. This models the photospheric diffu-

sion in MHD by imposing an electric field determined

solely from the radial component of the magnetic field

on the lower boundary. This results in very similar be-

haviour to the magnetofrictional equivalent on the lower

boundary.

2.4. Diagnostic Measures

In this section we describe the diagnostic measures

used to identify eruptive events and ultimately to make

predictions of future behavior. We require diagnostics

that have a single scalar value which represents the state

of the entire system. For the magnetofrictional simu-

lations the diagnostic values will depend only on the

strength and configuration of the magnetic field. In our

previous paper (Rice & Yeates 2022) we identify and

justify the use of several diagnostic measures. Some of

these are also used in this new work, and we also consider

some new quantities. The raw diagnostics we calculate

are as follows:

• Open Flux, defined as the sum of the unsigned

radial magnetic flux through the upper boundary.

An increase in the open flux indicates that fewer

magnetic field lines connect back to the surface,

and the coronal arcades are stretched upwards,

becoming more ‘open’. We use changes in the

open flux to identify arcade eruptions in the mag-

netofrictional models.

• Magnetic Energy, defined as EM =
∫
V

1
2B

2 dV .

For given boundary conditions, the initial poten-

tial field has minimal magnetic energy. The energy

increases significantly as the field evolves and flux

ropes form. There is usually a large decrease in

magnetic energy after eruptions. For eruptivity

predictions we favour the ‘Free Magnetic Energy’

(see below) rather than the magnetic energy itself.

• Axial Rope Current Ia, defined as the surface

integral of the current j within the rope, in the

direction of the rope axis (the z direction in carte-

sian coordinates or the ϕ direction in spherical po-

lar coordinates). In our 2.5D models the ‘rope’ is

defined as the region with infinitely-long magnetic

field lines that never reach either the photospheric

or outer boundaries.

• Poloidal Rope Flux Φp - a measure of the mag-

netic flux contained within the rope in the poloidal

(in-plane) direction. This is simple to calculate in

2.5D, as it can be defined simply as the flux in-

tersecting a chord between the centre of the rope

(where the out-of-plane component of the vector

potential A attains its maximum value) and the

edge of the domain.

• Axial Rope Flux Φa, defined as the integral of

the magnetic flux in the rope, along the axis (out-

of-plane) direction.

For the full MHD simulations we can also measure

properties of the fluid. Although ultimately these quan-

tities do not seem to be good predictors of eruptivity,

their behavior can be used to identify activity in the

system – for instance, the internal energy peaks during

arcade eruptions are more pronounced than any varia-

tion in the magnetic field.

• Internal Energy ϵ, which is here proportional

to the temperature of the system, related to the

fluid pressure and density by Equation 7. As a

diagnostic we use an integral of this quantity over

the entire domain.

In addition to the above, further measurements are

obtained by using comparison to a reference potential

magnetic field. Such a potential field BP is defined such

that (B − BP ) · n = 0 on the domain boundaries, and

BP = ∇Φ for some scalar function Φ. This configu-

ration has the lowest-possible magnetic energy for the

given boundary conditions.

In a fully 3D domain the potential field is well-defined,

but it is less clear for our 2.5D simulations, as there is no

boundary in the third (z/ϕ) dimension. In our previous

paper (Rice & Yeates 2022) we proposed a definition for

a reference field in 2.5D space whereby the out-of-plane

component of the reference field is a uniform (harmonic)

field whose magnetic flux matches the out-of-plane flux

of the original magnetic field. This definition has the

advantage that an equivalent 3D reference field will con-

verge to it in the limiting case that the domain becomes

infinitely long in the out-of-plane dimension.

In spherical coordinates, we could define the out-of-

plane component of the potential field identically to the

cartesian case, as the constant average value

B̃Pϕ
(r, θ) =

1

A

∫
Bϕ(r, θ) dr dθ, (24)

where A is the cross-sectional area of a hemisphere,

equal to π
2 (r

2
1 − r20). This is simple to calculate and ex-

hibits behavior similar to the cartesian equivalent. How-

ever, if such a field is extended to full 3D there would
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necessarily be a discontinuity at the north and south

poles if the average value in each hemisphere is nonzero.

A second approach is to regard the potential field as

an axisymmetric field in full 3D. In this case there is no

out-of-plane (ϕ) component at all:

BPϕ
(r, θ) = 0. (25)

The r and θ components of these potential fields BP and

B̃P are identical for both definitions, and are calculated

independently of the out-of-plane magnetic field. Quan-

tities using both of these definitions and their equivalent

vector potentials AP and ÃP (calculated by direct inte-

gration) are calculated for all three of the models. These

‘reference-based quantities’ are:

• Relative Helicity HR

The helicity within a volume V would be defined

as h(V ) =
∫
V
A ·B dV, where A is the vector po-

tential of B. This quantity is dependent in general

on the gauge of A, and so we use the alternative

relative helicity (Berger & Field 1984), which is

gauge independent:

HR =

∫

V

(A+AP ) · (B−BP ) dV. (26)

• Current-Carrying Helicity HJ

Similarly to the relative helicity, this is defined as

HJ =

∫

V

(A−AP ) · (B−BP ) dV, (27)

which is also gauge-independent.

• Free Magnetic Energy EF

The free magnetic energy is defined as the mag-

netic energy of the magnetic field minus the mag-

netic energy of the reference potential field BP ,

EF =

∫

V

(
1

2
B2 − 1

2
B2

P

)
dV, (28)

which is a good indicator of the ‘excess’ energy in

the system, as the potential field is the minimum

energy state for the given boundary conditions.

Each of these three quantities requires construction

of a potential field BP , which can be calculated using

either of the definitions described above. We thus denote

quantities calculated using the potential field with no

out-of plane component (BP ) without a tilde (e.g., HR),

and those with an out-of-plane component (B̃P ) with a

tilde (e.g., ẼF ).

We previously established (Rice & Yeates 2022) that

no single diagnostic is a good predictor of eruptiv-

ity. This is also true in these new simulations and

so we instead focus on ratios between them (e.g.,

|I2a/EF |, |H̃J/EF |), chosen with factors such that the

ratios are independent of the overall magnetic field

strength.

It must be noted that all of these diagnostic quantities

and ratios between them will depend significantly on the

size and configuration of the domain, and they are not

in general dimensionless. Although understanding these

effects will ultimately be necessary, we do not seek to do

so in this work and instead will only directly compare

diagnostic values where the domain configurations are

identical.

3. FLUX ROPE EVOLUTION AND ERUPTIONS

3.1. Typical Evolution

We observe similar behavior in all three sets of simu-

lations. Figure 4 plots selected diagnostics from a single

run from each set for comparison. Over the first 10-20

days, the solar wind opens out the magnetic arcade, in-

creasing the open flux through the upper boundary and

resulting in a smaller arcade as fewer magnetic field lines

loop back to the surface. In the absence of the dynamic

lower boundary conditions, the system would remain in

equilibrium in this state. Such an ‘outflow field’ is shown

in the lower row of Figure 2. During this initial phase we

also observe significant increases in relative helicity and

free energy as the magnetic field evolves further from a

potential field. During this period a current sheet devel-

ops at the top of the domain (in the out-of-plane direc-

tion), forming a helmet streamer (Linker & Mikic 1995).

Such current sheets are visible in the top snapshots of

Figure 5 as the arcade opens out.

The differential rotation on the solar surface then

causes the magnetic field to become sheared in the out-

of-plane direction. Open field lines outside the arcade

become sheared near the surface, but as they are not

fixed at the top boundary they are free to relax and

undo the shear. In the arcade itself the shearing be-

comes more pronounced, opening out the arcade even

further than caused by the effect of the solar wind alone.

The free magnetic energy continues to increase during

this period, as does the intensity of the current sheet

above the arcade.

After around 50-100 days the energy concentrated in

the current sheet becomes too great and there is a rapid

loss of equilibrium. There is fast magnetic reconnec-

tion at the top of the domain and the arcade quickly

moves downwards. We refer to this as an ‘arcade erup-

tion’ (Linker & Mikic 1995; Bhowmik & Yeates 2021),
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Figure 4. Selected diagnostics from a representative run from each of the three simulation sets, in dimensionless units. These
units are the same in the two cartesian setups but not in the polar coordinate simulations, due to the differing length scales.
Arcade eruptions are represented with blue circles, and flux rope eruptions with red circles. Note that internal energy is plotted
for the MHD simulation, whereas free magnetic energy is plotted for the magnetofrictional simulations. The time at which
an arcade eruption occurs is given by the time of maximum decrease in either open flux or internal energy, and the time of
a flux rope eruption is the point immediately before the poloidal rope flux falls to zero. Values are in general smaller in the
axisymmetric case due to small size of the rope compared to the distance unit.

indicated by blue circles in Figure 4. The sequence of

such an eruption in an axisymmetric magnetofrictional

simulation is shown in Figure 5. In MHD, matter is

ejected out of the top of the domain during these erup-

tions, leading to a large decrease in the internal energy

of the system. During these eruptions there are also
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t = 0 days t = 49 days t = 120 days

t = 121 days t = 122 days t = 123 days

t = 125 days t = 129 days t = 139 days

Figure 5. Snapshots from an axisymmetric polar magnetofrictional simulation with no photospheric diffusion (η0 = 0, ν0 = 2.0),
showing the shearing of the arcade and formation of a helmet streamer (top panes), followed by an arcade eruption starting
at around 120 days. The heatmap represents the out-of-plane current density, and the black lines are the magnetic field lines
projected into the plane.

decreases in open flux (most clearly visible here in the

axisymmetric simulations) and free magnetic energy.

When supergranular diffusion (the parameter η0) is

significant, we observe the formation and eruption of

magnetic flux ropes. The diffusion on the surface causes

the magnetic footpoints of the arcade to be brought to-

gether at the polarity inversion line, forming twisted

bundles of magnetic flux that no longer connect to the

solar surface. Although in reality such a rope would be

attached at either end, this is not the case in our 2.5D

domains. In the cartesian simulations these ropes are

essentially infinitely long in the out-of-plane direction,

and in the axisymmetric simulations the ropes wrap en-

tirely around the Sun.

The presence of the rope in Figure 4 is indicated by

nonzero poloidal and axial rope fluxes. In all three sets

of simulations the poloidal flux steadily increases until

the rope erupts, and is not usually affected by arcade

eruptions. The axial flux is affected by arcade eruptions

to a greater degree: in the magnetofrictional simulations

we observe it steadily increasing, whereas in the MHD

simulations it tends to reach a limit or even decrease as

the rope evolves. This appears to be the main differ-

ence in the dynamics between the two models, and has

significant consequences for the prediction of eruptions.

In most of the simulations, a flux rope forms and re-

mains in a semi-equilibrium state for some time. This

can be up to several hundred days, but the average time

is around 50-100 days after formation. During this pe-

riod arcade eruptions above the rope can continue to

take place. The presence of the rope alters the size and

timing of these eruptions, but the qualitative behavior

is the same. The rope itself moves downwards during

arcade eruptions, and in the MHD simulations this is

often followed by a period of damped oscillation as the

rope returns to a stable state. Such ‘kink oscillations’

have been observed in the corona, as discussed in Ku-

mar et al. (2022), where the flux rope fails to erupt in a

similar scenario to our ‘arcade eruptions’, although the

period of the oscillations in our model is of the order

10, 000 seconds - significantly longer than the observed

oscillations.

3.2. Typical Flux Rope Structure

The structure of a flux rope in full MHD is displayed

in Figure 6. As expected, we observe that the magnetic

field in the rope itself is twisted, with a maximum out-

of-plane component of roughly equal magnitude to the

radial magnetic field strength through the lower bound-

ary. As there is comparatively very little magnetic dif-

fusion in the solar corona, the plasma fluid is essentially

constrained to move along magnetic field lines (Alfvén’s

Theorem). We can see evidence of this in the plot of the

vertical fluid velocity, which is significant in the region
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with open magnetic field lines, due to the effect of the

solar wind. In the flux rope itself the fluid velocity is

comparatively small (less than a quarter of the the ve-

locity outside) or even negative as the fluid must remain

within the area of the rope.

The inner ‘core’ of the rope is where the magnetic

field is most sheared. In this region the internal energy

is relatively low and the fluid density relatively high.

The core is surrounded by a region with a considerably

lower fluid density (less than 10% of the core) and much

higher temperature, around 5 times that in the core.

This region also has a high out-of-plane current as the

magnetic field becomes less twisted. This non-uniform

shearing at different layers of the flux rope has been

noted in both observations and models (see the review

by Liu 2020). One explanation for this is that layers

of flux are added sequentially as the rope forms, and

are relatively undisturbed after formation (e.g. Priest &

Longcope 2017). This appears to be the process that we

observe here.

Further out from the centre of the rope there is a re-

gion with higher density, similar to that in the core,

where the magnetic field itself is not so significantly

sheared. Here there is very little perpendicular cur-

rent, with less than 5% of the maximum attained closer

to the centre of the rope. Such a boundary between

twisted and untwisted fields has been observed in both

analytical models (Demoulin et al. 1997) and MHD sim-

ulations (Aulanier et al. 2012). There is finally a thin

current sheet surrounding the whole structure, marking

the boundary at which the fluid velocity due to the so-

lar wind becomes significant. We also observe a current

sheet above the arcade, as in the cases without photo-

spheric diffusion.

The flux ropes in the magnetofrictional simulations do

not have such a complex structure. Such a rope in carte-

sian coordinates is illustrated for comparison in Figure

7. Although the overall configuration of the magnetic

field is very similar to MHD, the distribution of the cur-

rent differs in that the current sheet at the top of the

domain does not extend down to near the photosphere.

This is because the vertical solar wind velocity is applied

uniformly across the width of the domain, so there is no

shear layer between the open and closed field regions.

There is no equivalent of the fluid density or internal

energy in magnetofriction, and so these quantities are

not comparable.

In most simulations with a flux rope present we ob-

serve a catastrophic loss of equilibrium with rapid mag-

netic reconnection below the rope. The rope itself moves

very quickly upward out of the top of the domain – we

call this a ‘flux rope eruption’, indicated by red circles in

Figure 4. During such an eruption there is a significant

decrease in all diagnostic quantities, and in the MHD

case a large amount of mass is ejected from the domain.

The full sequence of flux rope formation and eruption

is shown in Figure 8, where both the in-plane magnetic

field lines and the out-of-plane current are plotted.

In most cases, after a flux rope eruption the system

still has sufficient energy to continue evolving. If so,

after a short period a magnetic arcade reforms and the

process restarts. However, the energy in the system is

lessened with each eruption and subsequent flux ropes

thus have smaller poloidal and axial magnetic fluxes. In

general these ropes do not last as long before erupting

as those that form initially.

This describes the fundamental processes observed in

the simulations. We next discuss the variation in the

system behavior based on the system parameters, as

well as the differences between cartesian and polar co-

ordinates and between magnetofriction and full MHD.

3.3. Dependence on Simulation Parameters

To produce a wide array of flux rope behaviors, with

differing rope strengths and sizes, we have undertaken a

large parameter study within each of the three models.

We fix three of the parameters throughout: the outflow

velocity factor v1 (set at 50 times the maximum shear-

ing rate), the coronal diffusion η (= 5 × 10−4) and the

photospheric shearing rate (V0), as discussed in Section

2.3.

There are two variable parameters. The most notable

is the supergranular diffusion rate η0, which is directly

related to the rate at which the flux ropes form and

erupt. In the magnetofrictional simulations we also vary

the magnetofrictional relaxation rate ν0, whereas in the

MHD simulations we vary the initial density ρ0.

For each of the three simulation setups we ran 320

simulations in subsets of 64 runs, keeping ν0 or ρ0 fixed

within each subset and varying η0. The simulations ran

for 500 days, allowing for the formation and eruption of

multiple flux ropes in some cases.

The parameter ranges varied based on the simulation

setup. For the cartesian magnetofrictional simulations,

10−3 < η0 < 10−1 and 0.5 < ν0 < 2. For the axisym-

metric magnetofrictional simulations 2 × 10−4 < η0 <

2×10−1 and 2 < ν0 < 10. The difference in these ranges

is accounted for by the differing unit length scales be-

tween the two grid systems. Smaller ν0 values did not

produce realistic behavior as the system takes too long

to relax to a force-free state, and for values higher than

this the simulations became too computationally inten-

sive (as smaller timesteps are necessary to prevent nu-

merical instability).
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Vertical Fluid Velocity

Magnetic Energy Perpendicular CurrentMagnetic Field

DensityInternal Energy

Figure 6. A snapshot of a flux rope from one of the cartesian MHD simulations with η0 = 0.029 and ρ0 = 1.0, showing
heatmaps of various diagnostic quantities to illustrate its structure. The black lines in the magnetic field plot are the field lines
projected onto the plane, and the heatmap represents the out-of-plane component of the field. All quantities except the fluid
velocity are strictly positive, increasing from zero (white) to their maximum value (red) on the colormap. The vertical fluid
velocity can take negative values within the rope, which are shown in blue.

Magnetic Field Magnetic Energy Perpendicular Current

Figure 7. A snapshot of a flux rope in one of the cartesian magnetofrictional simulations with η0 = 0.005 and ν0 = 1.0, showing
colormaps of various diagnostic quantities to illustrate its structure. The black lines in the magnetic field plot are the field lines
projected onto the plane, and the heatmap represents the out-of-plane component of the field.

In the MHD simulations 2.5 × 10−3 < η0 < 10−1 (al-

though this is not directly equivalent to the magnetofric-

tional η0 as discussed in Section 2.3), with the initial

density (and the fixed density boundary condition on the

lower boundary) in the range 0.5 < ρ0 < 2.0. Varying

the initial density changes the plasma beta – the ratio

of plasma pressure to magnetic pressure. This does not

greatly alter the behavior of the system, but allows us

to ensure any eruptivity criteria we later find are inde-

pendent of the plasma beta.

Figure 9 presents an overview of 64 of the simulations

from each of the three models, varying the photospheric

diffusion η0 on the x axis. The overall pattern is similar

in each case. We observe periodic arcade eruptions (the

blue circles on the plot) for low η0, where there is no (or

a very small) flux rope present. For higher values of the

photospheric diffusion we observe flux rope formation,

indicated by the vertical red lines. There still can be

arcade eruptions when a flux rope is present, but when

the photospheric diffusion is too high the ropes them-

selves erupt too quickly to allow for this. The general

trend is that for higher η0 the ropes form and erupt more

quickly. In general ropes reform after erupting, but for

very high diffusion rates the system loses enough energy

that some ropes do not reform.

Although the overall pattern between the three setups

is similar, there are some notable differences. The range

of η0 at which certain behavior occurs is similar between

the two cartesian simulations, but in general ropes form

and erupt with smaller η0 in the axisymmetric polar sim-

ulations, hence the variation in the parameter ranges

chosen (the x axes of Figure 9 are adjusted to reflect

this). For low η0 we observe regular arcade eruptions,

but the frequencies are not equivalent in each model

– they are notably less frequent in the cartesian mag-

netofrictional simulations. The pattern is less regular in

the axisymmetric simulations, which is to be expected

as the shearing rate is more complex and the domain is

larger, allowing the arcade more freedom to move and

become asymmetrical (as observed in Figure 5). This

freedom also enables the pattern of flux rope eruptions

to become less regular than in the cartesian simulations.

In our previous paper it was unclear whether there is

a minimum (nonzero) η0 below which a flux rope will
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t = 0 days t = 40 days t = 100 days

t = 240 days t = 282 days t = 285 days

t = 286 days t = 290 days t = 350 days

Figure 8. Formation and eruption of a flux rope. This is a cartesian MHD simulation with coronal diffusion η0 = 0.01. The
heatmaps represent the out-of-plane current density, and the black lines are the magnetic field lines projected into the plane.
The rope erupts at around t = 285 days, after which it reforms. The process would then in general repeat.

never erupt. However, we observe for very low η0 in

cartesian MHD the poloidal rope flux does not neces-

sarily increase monotonically, and indeed in this case

the rope will likely slowly diffuse away and not erupt.

This diffusion is also observed in some of the cases on

the right of Figure 9, for ropes that have already erupted

and reformed. In the axisymmetric simulations ropes do

not necessarily form at all for low η0.

A large arcade eruption can prematurely trigger a full

flux rope eruption. This phenomenon is clearly observed

in the top pane of Figure 9 (the cartesian magnetofric-

tional simulations). As η0 increases, arcade eruptions

become larger (indicated by larger blue circles) until

they cause the eruption of the rope itself. As the arcade

eruptions have very regular frequency, this has resulted

in the stepped pattern in the time of first flux rope erup-

tion. Such a pattern is also visible in the cartesian MHD

simulations to a lesser extent, but as the arcade erup-

tions are relatively more frequent it is less clear.

Ultimately, we observe very similar dynamics in all

three models, verifying that magnetofriction can accu-

rately represent the qualitative behavior of magnetic

flux ropes. We also observe similar behavior between

the cartesian and axisymmetric polar simulations, in-

dicating that using cartesian coordinates to model the

local dynamics of the corona qualitatively is a valid ap-

proach. It remains to discuss the conditions of flux rope

instability in each of the models.

4. COMPARISON OF SCALAR ERUPTIVITY

PROXIES

In this section we discuss the possibility of finding

a scalar quantity derived from the system diagnostics

that can be used to predict an imminent (later) flux

rope eruption. Based on our previous magnetofrictional

study (Rice & Yeates 2022) we expect that a single di-

agnostic value, such as the rope current or open flux,

cannot itself be a good predictor of eruptivity due to

the large variation in the size and strength of the flux

ropes. We found that ratios of the axial rope flux or

current to potential field diagnostics (such as the free

energy or relative helicity) were good predictors, there

being a threshold for each ratio above which an eruption

was very likely within a given time.

Rice & Yeates (2022) also found that the ‘eruptivity

index’ (Pariat et al. 2017) – the ratio of current-carrying

helicity to relative helicity – was a poor predictor of

eruptivity, and in fact performed little better than ran-

dom chance. It should be noted that the definition used

in that paper was the ‘2.5D’ version as described in Sec-

tion 2.4 - i.e. |H̃J/H̃R|. Here we also consider the al-

ternative definitions for the reference-based quantities

discussed in Section 2.4, and as such there are now four

variants of each ratio.

The diagnostic ratios fall into two categories. The first

are ratios of the rope current or flux squared divided by
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Figure 9. Overview of 64 runs from each of the three sets of simulations – cartesian magnetofriction (top), axisymmetric polar
magnetofriction (middle) and cartesian MHD (bottom), varying η0 on the horizontal axis. Each simulation corresponds to a
vertical line on the plot. The poloidal magnetic flux in the flux rope is represented by the thickness of the red lines. The times of
arcade eruptions are represented by blue circles and flux rope eruptions by red squares, respectively. The size of the red squares
is proportional to the decrease in poloidal magnetic flux during an eruption, and the size of the blue squares is proportional to
the decrease in open flux (magnetofriction) or internal energy (MHD) during each arcade eruption.

a reference-based quantity (e.g. |Φ2
a/ẼF |). The second

are ratios between two reference-based quantities (e.g.

|HJ/H̃R|).
Our procedure for identifying which ratios are good

predictors is as follows. For each diagnostic snapshot

where a rope exists, the ratio values are sorted accord-

ing to whether or not they precede a flux rope erup-

tion within a certain time cutoff t (between 10 and 50

days). For each ratio, two histograms are then pro-

duced: one for points preceding an eruption and one

for points not preceding an eruption. Figure 10 shows

these histograms in red and blue respectively, for three

of the diagnostic ratios. The histograms are normalised

to have the same area, resulting in distribution curves

R(x, t) and B(x, t) for eruptive and non-eruptive points

respectively. This normalization effectively assumes an

equal weighting of eruptive and non-eruptive ropes – this

could be improved with prior knowledge of the overall
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Figure 10. Distribution of eruptive and non-eruptive values and the respective distribution curves R(x, t) (red) and B(x, t)
(blue) for a flux rope eruption within t = 10 days. The three diagnostic ratios plotted are axial current squared over relative
helicity, poloidal flux squared over relative helicity and the current-carrying helicity over relative helicity. Note that the poloidal
flux ratio uses the 3D definition of the relative helicity (not including the out-of-plane magnetic flux), whereas the others use
the 2.5D definition. Eruptive points are colored red and non-eruptive points colored blue. The relative heights of each curve
give an indication of the likelihood of an eruption occurring within 10 days. The histograms with little red/blue overlap are
better predictors.

probability of a rope erupting. For instance, regarding

the ratio |HJ/H̃R| at the bottom right of Figure 10, the

peak at around 0.6 indicates that if the diagnostics have

this value then a flux rope eruption within 10 days is

very likely. Good diagnostic predictors will have little

overlap between the blue and red regions while bad pre-

dictors have a significant overlap.

We then define the probability of an eruption within

time t given a diagnostic ratio value x as

Pe(x, t) = 1−
(
1− R(x, t)

R(x, t) +B(x, t)

)2

, (29)

where the squaring in general slightly increases the pre-

dictive ability. We can calculate the accuracy of these

probabilities by then comparing against the data, calcu-

lating a ‘skill score’

E(t) =
ΣErupt x Pe(x, t) + ΣNo Erupt x (1− Pe(x, t))

Total Number of Values
.

(30)

If a diagnostic ratio can predict eruptions within a time

t perfectly, then it would have skill score E(t) = 1 (but

this would require complete certainty for each value). If

the ratio is no better than random chance than it will

have skill score E = 0.5. The skill scores E(t) for 16

selected diagnostic ratios are shown in Figure 11, for

each of the three models. Ratios between reference-

based quantities (such as the eruptivity index) are col-
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a/ẼF |
|I2
a/HR|
|I2
a/EF |

|H̃J/H̃R|
|H̃R/ẼF |
|HJ/H̃R|
|HJ/HR|

Figure 11. The skill scores for selected diagnostic ratios, varying with the time cutoff between a prediction and the flux rope
eruption. Axial rope current and flux are denoted Ia and Φa respectively, poloidal rope flux is denoted Φp and the reference-
based quantities are as defined in Section 2.4. The particular diagnostic ratios in black are selected as they perform well in at
least one of the simulation sets.

ored black, and the other ratios are colored based on the

numerator.

As in our previous paper, we find that in the cartesian

magnetofrictional simulations (top) ratios of the axial

current squared (red) to the relative helicity or free en-

ergy are the best predictors back to around t = 30 days

before an eruption. In the magnetofrictional simulations

these ratios have skill scores up to E = 0.968. These ra-

tios also perform well in the MHD simulations, with skill

scores around E = 0.9. The histograms for one of these

ratios (|I2a/H̃R|) are plotted on the left of Figure 10. We

observe that in both of the cartesian simulations (mag-

netofriction and MHD) the eruptive distribution curve

R(x, 10) peaks at a value around 15 units, indicating

that this criterion for eruptivity is consistent in both

magnetofriction and MHD.

Ratios with the poloidal rope flux (green) consistently

performed the best in the MHD simulations, with skill

songyongliang
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scores up to E = 0.911, although not notably more so

than the equivalent ratios with axial current. The ratios

using the axial rope flux (blue) as numerator did not

perform as well in either scenario.

As expected, predictions of eruptions are more accu-

rate closer to the time of the eruption itself, as seen

in the variation in the skill scores plotted in Figure 11.

However, the decreased ability to predict eruptions far

into the future is counteracted by the general increase

in likelihood of an eruption within a larger time frame,

explaining why the skill scores do not fall to E = 0.5

particularly quickly.

The predictive ability of the ratios between two

reference-based quantities (such the eruptivity index

|HJ/HR|) varies greatly among the three models. The

four ratios plotted in Figure 11 (in black) are chosen as

they are each good predictors in at least one of the mod-

els. As we found previously, the eruptivity index calcu-

lated using the 2.5D definition |H̃J/H̃R| (solid black) is

not at all a good predictor in the cartesian magnetofric-

tional simulations. We find it is slightly better in MHD,

but has a maximum skill score of only around 0.75, far

less than ratios involving the axial current or poloidal

flux.

However, an alternative definition of the eruptivity in-

dex - using a mixture of the two reference potential field

definitions – performs very well in both of the cartesian

models. This ratio |HJ/H̃R| is plotted as a dot-dashed

black line in Figure 11, and we observe maximum skill

scores of E = 0.928 in the magnetofrictional simulations

and E = 0.910 in the MHD simulations. This good pre-

dictive ability is also evidenced by the sharp peak at

around 0.6 in the upper and lower right histograms of

Figure 10.

Predictive abilities for all diagnostics are notably lower

in the axisymmetric model than the cartesian models.

The most basic explanation for this is that all the di-

agnostic quantities are calculated as integrals over the

whole Sun rather than the region immediately surround-

ing the rope, and so are influenced more heavily by dy-

namics away from the rope itself. For this reason we

suggest that diagnostic measurements calculated by in-

tegrating over smaller domains containing just the active

region in question are likely to be better predictors. Ra-

tios with the axial rope flux as numerator (blue) did not

perform well in the cartesian simulations, but were (by

a small degree) the best predictors in the polar simula-

tions with skill scores of up E = 0.84.

In the axisymmetric simulations, ratios between

reference-based quantities do not in general perform

well, although the variations on the eruptivity index

(dot-dashed, solid and dotted lines in Figure 11) do be-

come better at short timescales, with skill scores up to

E = 0.758 for the ratio |HJ/H̃R|. Even so, this value

is not high enough that it could be reliably used to pre-

dict eruptions. This relatively poor performance is likely

due not to the different coordinate systems but to the

size of the integration domain relative to the rope, and

the fact that in this case the current-carrying helicity

is capturing irrelevant dynamics from elsewhere in the

system.

4.1. Consistency between MHD and Magnetofriction

We have shown that certain ratios can perform well

as predictors of eruptivity in both magnetofriction and

MHD individually, but have not yet considered the ratio

values themselves at which an eruption is likely to occur.

The domain size, initial conditions and flux rope behav-

ior are directly comparable between cartesian MHD and

cartesian magnetofriction, and so we should ideally ex-

pect similar peak values for the eruptive histograms in

either case.

Table 1 lists the performance of all diagnostic ratios

with skill score greater than 0.8 in either of the carte-

sian models, using a time cutoff of 10 days. The peak

eruptive value (in the first two columns) is the diagnos-

tic value for which an eruption is most likely. Ideally

this value would be similar for both the magnetofric-

tional and MHD simulations. This is true for most of

the ratios, especially for those between two reference-

based quantities (such as the eruptivity index). The

only ratios with large discrepancies (greater than 20%)

are those with the free energy (EF or ẼF ) as denomi-

nator.

The fact that these discrepancies exist are an indica-

tion that the pre-eruption magnetic fields are not identi-

cal in the two models, which is perhaps to be expected.

However, the fact that most of the ratios have simi-

lar peak eruptive values indicates that magnetofriction

could indeed be used as a predictive method for flux

rope eruptions of this nature, as long as measuring cer-

tain quantities (such as the free energy) is avoided.

Although all of the ratios in Table 1 with the axial

current as numerator had relatively high skill scores in

both the magnetofrictional and MHD simulations, only

|I2a/H̃R| has very similar peak eruptive values in both

cases – at around 14 units. This ratio also has the high-

est skill score in the magnetofrictional simulations. The

equivalent ratio for poloidal flux, but using the other

relative helicity definition |Φ2
p/HR| also performs well in

both models, with values around 0.025 units indicating

an eruption is very likely.

The ratios between reference-based quantities (black

in Figure 11) are in general more consistent between
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Peak Eruptive Value Skill Score E

Diagnostic Ratio MF MHD Percentage Difference MF MHD

|Φ2
p/H̃R| 0.079 0.065 22.85% 0.900 0.893

|Φ2
p/ẼF | 0.058 0.040 45.32% 0.873 0.917

|Φ2
p/HR| 0.025 0.025 0.589% 0.876 0.905

|Φ2
p/EF | 0.039 0.036 9.168% 0.873 0.915

|Φ2
a/H̃R| 0.162 0.143 13.06% 0.825 0.830

|Φ2
a/HR| 0.048 0.058 18.59% 0.800 0.803

|I2a/H̃R| 13.95 14.46 3.634% 0.968 0.892

|I2a/ẼF | 10.06 14.26 41.79% 0.940 0.900

|I2a/HR| 5.562 6.442 15.80% 0.949 0.893

|I2a/EF | 8.589 12.64 47.22% 0.952 0.897

|H̃J/H̃R| 0.261 0.278 6.266% 0.746 0.810

|H̃R/ẼF | 0.673 0.714 5.975% 0.910 0.808

|H̃R/EF | 0.581 0.644 10.82% 0.758 0.817

|HJ/H̃R| 0.617 0.585 5.414% 0.928 0.908

|HJ/HR| 0.224 0.240 7.258% 0.804 0.839

|HR/ẼF | 1.825 1.696 7.586% 0.834 0.844

|HR/EF | 1.723 1.535 12.29% 0.885 0.856

Table 1. Table comparing the peak eruptive value and skill scores at time cutoff t = 10 days for a variety of diagnostic ratios,
using data from the cartesian magnetofrictional and MHD simulations. All ratios with skill scores greater than 0.8 in either
simulation set are included. Ratios that perform well in a certain aspect are in bold font.

magnetofriction and MHD. This is encouraging, but the

skill scores for these ratios are not particularly high

compared to those calculated using the rope current or

flux. The notable exception to this is the ratio |HJ/H̃R|,
which has an excellent skill score in both the MHD and

magnetofrictional simulations, and peaks at around 0.6

in both cases.

5. DISCUSSION

We have used three independent models (cartesian

and polar magnetofriction, and cartesian MHD) to eval-

uate the ability of a variety of scalar diagnostic quanti-
ties to predict the eruption of magnetic flux ropes. We

have determined that ratios of the axial rope current

squared divided by the relative helicity or free energy

are in general the best predictors, but the only one of

these ratios that was consistent between magnetofric-

tion and MHD was |I2a/H̃R|, with a peak eruptive value

of around 14 units. Note that such a direct comparison

between the models is only valid as the models share

the same domain size and setup. The precise threshold

value in other simulations will depend on a number of

other factors.

Ratios of the poloidal flux squared divided by the rela-

tive helicity are also good predictors, but again the only

ratio consistent between the two models was |Φ2
p/HR|,

with a peak eruptive value of around 0.025 units. Note

that the ratios between the relative helicity and current-

carrying helicity are dimensionless, but the other ratios

are not necessarily so and will depend on the chosen

length units.

Ratios with the free energy (defined for either type

of reference field) have peak eruptive values that differ

significantly between MHD and magnetofriction. This

does not necessarily indicate that these ratios cannot

be good predictors, but any errors in the extrapolation

of the magnetic field may be more likely to alter the re-

spective predictive thresholds. The relative helicity, also

defined in either manner, performs better as a denomi-

nator and does not have this problem, with (in general)

similar peak eruptive values.

Ratios between the relative helicity, current-carrying

helicity and free energy were in general more consis-

tent between magnetofriction and MHD. However, al-

though ropes tend to erupt with similar values of these

ratios there are significant numbers of ropes that do not,

whereas with the axial current ratios there instead tends

to be a specific threshold above which ropes are very

likely to erupt.

We have presented two ways to define HR, HJ and

EF , which each have their merits depending on the co-

ordinate system. Of note, the eruptivity index |HJ/HR|
is not a good predictor of eruptions except when de-

fined as |HJ/H̃R| – where the out-of-plane component

of the reference potential field is included in the rela-

tive helicity H̃R but not in the current-carrying helicity

HJ . Almost all eruptions in either the cartesian MHD
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or cartesian magnetofriction simulations occurred when

this index had a value around 0.6 units.

An explanation for the predictive ability of this par-

ticular ratio is that the flux in the rope has more of

an effect on the 3D helicity definition than the 2.5D

definition. Using the 2.5D definition the out-of-plane

component of the magnetic field B is negated by the

nonzero component in the potential field BP . Thus the

presence and strength of the rope, with its highly out-

of-plane magnetic structure, is best quantified using a

numerator with the 3D definition (e.g. HJ) . In general

the ratios with denominators using the 2.5D definition

(e.g. H̃R) performed better, perhaps as these diagnos-

tics are less affected by the presence of the rope, instead

being better indicators of the state of the background

magnetic field.

We note once again that the actual value of any of

these ratios will depend significantly on the size and

configuration of the domain (as evidenced by the large

difference in these values between the cartesian and ax-

isymmetric simulations). It remains to find a method for

establishing the eruptive thresholds for an arbitrarily-

sized (or shaped) domain. The errors in the construc-

tion of the magnetic field from observed data may also

affect the performance of the most successful diagnostics

to differing degrees.

We have determined that magnetofriction can be a

useful tool for predicting the eruptions of ideally unsta-

ble 2.5D flux ropes, where there exist several diagnos-

tic ratios that have consistent thresholds for eruptivity

in both magnetofriction and MHD. However, there are

many other processes in full MHD (such as breakout

or tether cutting) that can be responsible for flux rope

eruptions. It remains to be shown whether similar re-

sults to ours can be obtained for these cases.

We note that the qualitative behavior of the flux rope

system is very similar in either cartesian or polar co-

ordinates, but the diagnostic values behave very differ-

ently when the integration domain extends far beyond

the influence of the rope. When calculating integrals of

helicity in the real corona it would thus be necessary

to integrate over a smaller domain just surrounding the

rope itself, although in that case care must be taken to

choose the location of the boundary of such a domain.

We have shown that the ratio of axial current squared

to relative helicity exhibits a threshold above which

eruptions are likely. However, in full 3D the rope is less

well-defined, and as such the axial current itself would

likely be more problematic to measure than the helicity.

Thus, when using real observed data it is likely that the

eruptivity index |HJ/H̃R|, appropriately defined, may

well provide the most accurate indication of an immi-

nent flux rope eruption.
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